2016最新中考動態
2016中考錄取分數線
2016中考成績查詢、中考查分
2015中考數學:初三差生如何迎頭趕上
作者:佚名 信息來源:本站原創 更新時間:2014-9-17
2、“數形結合”的思想
大千世界,“數”與“形”無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支——代數和幾何,代數是研究“數”的,幾何是研究“形”的。但是,研究代數要借助“形”,研究幾何要借助“數”,“數形結合”是一種趨勢,越學下去,“數”與“形”越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標系后,研究函數的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今后的數學學習中,要重視“數形結合”的思維訓練,任何一道題,只要與“形”沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成一種“數形結合”的好習慣。
通過初一、初二兩年的學習,想必同學們都有這樣的親身體會,在學初中的有關基礎知識內容時,只要認真聽老師講解,都能聽得懂,所以要掌握一般的基礎知識并不難。練習中一步到位的與新知識有關的簡單題也并不難做,難的是較復雜一點的、與以前學過但自己又沒有掌握好的知識聯系在一起的綜合題。
3、“對應”的思想
“對應”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數“1”,將兩只眼睛、一對耳環、雙胞胎對應一個抽象的數“2”;隨著學習的深入,我們還將“對應”擴展到對應一種形式,對應一種關系,等等。比如我們在化簡求值計算中,將式子中有關字母或某個整體的值,對應代入,直接算出原式的結果。又比如我們到初三綜合學習了與圓有關的角,圓心角、圓周角、弦切角的數量關系必須“對應”同一段弧才能成立。這就是運用“對應”的思想和方法來解題。初二、初三我們還看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應?傊,“對應”的思想在今后的學習中將會發揮越來越大的作用。
4、“轉化”的思想
解數學題最根本的途徑是“化難為易,化繁為簡,化未知為已知”,也就是把復雜繁難的數學問題通過一定的數學思維、方法和手段,逐漸將它轉變成一個大家熟知的簡單的數學形式,然后通過大家所熟悉的數學運算把它解決。
比如,我們學校要擴大校園,需要向某村征地。而某村給了一塊形狀不規則的地,如何丈量它的面積呢?首先,使用適當的測量工具,依據一定的比例,將實際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長方形、三角形,利用學過的面積計算方法,計算出這些圖形的面積之和,也就得到了這塊不規則地形的總面積。在這里,我們把無法計算的不規則圖形轉化成了可以計算的規則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉化成一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。
“轉化和替代”的思想,是解題的最重要的思維習慣。面對難題,面對沒有見過的題,首先就要想到“轉化”,也總是能夠“轉化”的。平時,要多留心老師是怎樣解題的,是怎樣“化難為易、化繁為簡、化未知為已知”的。同學之間也應多交流交流“成功轉化”的體會,深入理解“轉化”的真正含義,切實掌握“轉化”的思維和技巧。
三、自學能力的培養是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數學是一門能自學的學科,自學成才最典型的例子就是數學家華羅庚。2015中考數學:初三差生如何迎頭趕上
2016年中考信息不斷變化,m.shigellalitigation.com 91中考網提供的中考成績查詢查分、錄取分數線信息僅供參考,具體以相關招生考試部門的信息為準!